S1 Text. Score statistic

The minor allele frequencies π_1 and π_0 for cases and controls, respectively, are re-parameterized as $\pi_{D_i} = e^{\alpha + \beta D_i}/(1 + e^{\alpha + \beta D_i})$ for individual i. Denote $p_i = P_{\epsilon_{D_i}}(R|T,G=0) + 2e^{\alpha + \beta D_i}P_{\epsilon_{D_i}}(R|T,G=1) + e^{2\alpha + 2\beta D_i}P_{\epsilon_{D_i}}(R|T,G=2)$ and $q_i = 2e^{\alpha + \beta D_i}P_{\epsilon_{D_i}}(R|T,G=1) + 2e^{2\alpha + 2\beta D_i}P_{\epsilon_{D_i}}(R|T,G=2)$. The likelihood function (2) becomes $L_{\text{CC}}(\alpha,\beta,\epsilon_1,\epsilon_0) = \prod_{i=1}^n p_i/(1 + e^{\alpha + \beta D_i})^2$ and the score functions with respect to β and α are $S_{\beta} = \sum_{i=1}^n D_i \left\{ q_i/p_i - 2e^{\alpha + \beta D_i}/(1 + e^{\alpha + \beta D_i}) \right\}$ and $S_{\alpha} = \sum_{i=1}^n \left\{ q_i/p_i - 2e^{\alpha + \beta D_i}/(1 + e^{\alpha + \beta D_i}) \right\}$, respectively. Under the null hypothesis that $H_0: \beta = 0$, the score functions S_{β} and S_{α} becomes $\sum_{i=1}^n D_i q_i/p_i - 2n_1 e^{\alpha}/(1 + e^{\alpha})$ and $\sum_{i=1}^n q_i/p_i - 2ne^{\alpha}/(1 + e^{\alpha})$, respectively. Then, we deduce that $S_{\beta} = S_{\beta} - (n_1/n)S_{\alpha} + (n_1/n)S_{\alpha} = \sum_{i=1}^n (D_i - n_1/n)q_i/p_i + (n_1/n)S_{\alpha}$. When the nuisance parameters α , ϵ_1 , and ϵ_0 are substituted by their restricted MLEs, q_i/p_i is exactly \widetilde{G}_i as defined below equation (3) and $S_{\alpha} = 0$ by the definition of restricted MLEs. Therefore, we have shown that the score statistic takes the form in equation (3).